. A G ] 2 2 Ja n 20 09 A p - ADIC REGULATOR MAP AND FINITENESS RESULTS FOR ARITHMETIC SCHEMES 1
نویسنده
چکیده
A main theme of the paper is a conjecture of Bloch-Kato on the image of padic regulator maps for a proper smooth variety X over an algebraic number field k. The conjecture for a regulator map of particular degree and weight is related to finiteness of two arithmetic objects: One is the p-primary torsion part of the Chow group in codimension 2 of X . Another is an unramified cohomology group of X . As an application, for a regular model X of X over the integer ring of k, we show an injectivity result on torsion of a cycle class map from the Chow group in codimension 2 of X to a new p-adic cohomology of X introduced by the second author, which is a candidate of the conjectural étale motivic cohomology with finite coefficients of Beilinson-Lichtenbaum.
منابع مشابه
Abel-jacobi Mappings and Finiteness of Motivic Cohomology Groups
1. Notation and generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 2. Varieties over local fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3. Varieties over p-adic fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4. Number field ca...
متن کاملA FINITENESS THEOREM FOR ZERO-CYCLES OVER p-ADIC FIELDS
Contents Introduction 2 1. Homology theory and cycle map 6 2. Kato homology 12 3. Vanishing theorem 16 4. Bertini theorem over a discrete valuation ring 20 5. Surjectivity of cycle map 23 6. Blow-up formula 25 7. A moving lemma 28 8. Proof of main theorem 30 9. Applications of main theorem 33 Appendix A.
متن کاملLocal and global canonical height functions for affine space regular automorphisms
Let f : A → A be a regular polynomial automorphism defined over a number field K . For each place v of K , we construct the v-adic Green functions Gf,v and Gf−1,v (i.e., the v-adic canonical height functions) for f and f . Next we introduce for f the notion of good reduction at v, and using this notion, we show that the sum of v-adic Green functions over all v gives rise to a canonical height f...
متن کاملAutomata finiteness criterion in terms of van der Put series of automata functions
In the paper we develop the p-adic theory of discrete automata. Every automaton A (transducer) whose input/output alphabets consist of p symbols can be associated to a continuous (in fact, 1-Lipschitz) map from padic integers to p integers, the automaton function fA. The p-adic theory (in particular, the p-adic ergodic theory) turned out to be very efficient in a study of properties of automata...
متن کاملFINITENESS THEOREM ON ZERO-CYCLES OVER p-ADIC FIELDS
Contents Introduction 2 1. Homology theory and cycle map 6 2. Kato homology 11 3. Vanishing theorem 15 4. Bertini theorem over a discrete valuation ring 19 5. Surjectivity of cycle map 22 6. Blowup formula 24 7. A moving lemma 26 8. Proof of main theorem 28 9. Applications of main theorem 31 Appendix A. Resolution of singularities for embedded curves 34 References 39
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009